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1 Introduction

Consider the problem of drawing star patterns. If you are asked to draw a 5 pointed star pattern,
it is relatively straight forward. How about an 8 pointed star pattern?. It could be challenging at
first. To do this, start by drawing a circle and then mark equally spaced 8 points and label them
0, 1, 2, 3, · · · , 7. Next, connect each point to another point which is at a fixed units away. For
instance, let us decide to connect every point to points which are 3 units away. This means we can
we connect 0 to 3, 3 to 6,· · · ,5 to 0 to obtain Fig 1.1.

On the other hand, if the choice is to connect every point to points that are 2 units away, this
choice forms a star pattern having two distinct components. To draw this pattern, we can connect
0 to 2, 2 to 4,..., 6 to 0 for the first component, and then connect 1 to 3, 3 to 5, ..., 7 to 1 to obtain
. Notice that the choice of turning by 3 results in construction without lifting pen; such a pattern
is called as a star polygon. In contrast, when connecting 2 units away requires lifting the pen, and
this pattern is referred to as a star figure. This means, star patterns are generally classified into
star polygons and star figures.

These patterns are commonly denoted using Schläfli symbol {n/k}, where n is the number of
vertices and k is turning number. The star polygon obtained from connecting every third is denoted
as {8/3}, while the star figure drawn by connecting every two units apart is denoted as {8/2}.
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Fig 1.1 Star Polygon {8/3}
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Fig 1.2 Star Figure {8/2}

It’s a fun activity to observe and make conjectures about these patterns. For instance, How many
n pointed star polygons can be drawn , or How many distinct components are there in a star figure.
We will discuss the algebraic connections in star polygons and figures to answer these questions.
In fact, these patterns will help us to visualize abstract concepts from Group theory such as cyclic
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groups, isomorphism and cosets. Let us begin by considering the construction and discussion of
star patterns without lifting the pen or better known as star polygons.

2 Star Polygons: Construction and Their Cyclic Structure

As suggested in the introduction, when constructing a star polygon, we need to choose the turning
number such that it doesn’t loop in a smaller subset of the labels but reach all them. This is exactly
the situation when we choose k such that gcd(k, n) = 1

Draw a circle and mark n points and label them with numbers from 0 to m − 1. Choose
any number k such that gcd(k, n) = 1. Join each point x to (x+ k) (mod n).

For instance, The following are possible 7 pointed star polygons based on this procedure:
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k = 1 or 6 (trivial star)
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In this section, we will mainly address following questions:

� Why the condition gcd(k, n) = 1?

� How many n pointed star polygons can be drawn. ?

� Why do star polygon symmetries pair up ?

In addition to answer these questions, we need to understand cyclic groups, the underlying algebra
structure associated with these patterns. In fact they help to visualize cyclic groups. Let us first
introduce the notion of a cyclic group.

Cyclic Groups; An overview

Given a set G together with an binary operation ∗, we say G forms an algebraic structure named
group, if it satisfies the following axioms,

1. ∗ is a binary operation in G

2. a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀a, b, c ∈ G

3. there exist e ∈ G such that a ∗ e = e ∗ a = a

4. for each a ∈ G there exist b such that a ∗ b = e = b ∗ a

A group G is said to be cyclic, if there exist a ∈ G such that G = {an : n ∈ Z}, where ′a′ is
called as the generator. In other words, a cyclic group posses an element that can generate all
other elements in the group. An important example of cyclic group is an additive group. Let
Zn = {0, 1, 2, 3, . . . , (n− 1)} be the set of remainders upon division by n, we can easily verify Zn is
a group under addition modulo n. Since 1 ∈ Zn, clearly it is cyclic.

The construction procedure suggested earlier be thought as constructing over the cyclic group Zn.
We can think of wrapping around elements of Zn around the circle, , choosing an element k from
Zn and connecting the points by computing k, (k +n k), (k +n k +n k), · · · , 0.

Why the condition gcd(k, n) = 1?

As our intuition suggests, an n pointed star polygons is only possible when the choice of k is a
generator of the group Zn. If you observe Fig 2.1, we can note that when m = 8 and k = 2, this
choice reaches all the multiples of 2. Similarly, k = 6 reaches the same labels. What’s common
between them ? They share the greatest common divisor of 2 with m = 8. In fact, when we choose
some k, the labels it will reach are multiples gcd(k, n). So naturally to reach all the labels gcd(k, n)
simply has to be 1. The following theorem proves it formally using bezout’s identity and congruence
properties.

Theorem 2.1 k ∈ Zn is a generator of Zn, if gcd(k, n) = 1

Proof : The idea of proof is similar to earlier discussion. We have to show that, if gcd(k, n) = 1,
then the successive elements k, (k +n k), (k +n k +n k), somehow reaches 1. If it can reach 1 then
it must reach any arbitrary b ∈ Zn.

Applying bezout’s identity in gcd(a, n) = 1, we get x0, y0 such that ax0 +ny0 = 1. Rearranging we
get, ax0 − 1 = n(−y0). From the definition of congruence, this will imply ax0 ≡ 1 (mod n). Now
let b ∈ Zn be arbitrary , using the multiplication property of congruence we get

a(x0b) ≡ (b) (mod n) =⇒ a+n a+n . . .+n a︸ ︷︷ ︸
x0b times

= b

3



0

1

2

3

4

5

6

7

Fig 2.1 (k = 2 or 6)
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Fig 2.2 (k = 4)

Though the choice of k = 2 and k = 4 didn’t draw the star but they help to visualize subgroups
of Z8. Fig 2.1 represents the cyclic subgroup generated by 2 or < 2 >= {0, 2, 4, 6} and Fig 2.2
represents < 4 >= {4, 0}.

How many n pointed star polygons can be drawn ?

We expect to draw a star polygon for each k ∈ Zn such that gcd(k, n) = 1. Therefore, counting
those elements less than n and relatively prime to n will give us the possible choices of k. This
is exactly same situation with Euler’s Totient Function ϕ(n). Intuitively, we can see that each
clockwise-construction is paired off with a counter-clockwise construction. Therefore, there are
ϕ(n)
2 distinct star polygons (counting the trivial star polygon). For instance, when m = 8, ϕ(8) = 4,

so the two distinct star patterns; The trival star and Fig 1.1

Why do symmetries pair up?

The fact that counter clock-wise constructions with k is always paired off with clockwise construction
with (n−k) can be seen as a geometrical argument for why Euler’s Totient Function is always even.
Formally, if k ∈ Zn is a generator then (n− k) is also a generator of Zn.

Theorem 2.2 if gcd(k, n) = 1 then gcd(n− k, n) = 1

Proof (By contra-position): Suppose gcd(m − k,m) = d ̸= 1. Thus d|(m − k) and d|m. from
d|(m− k) we get (m− k) = dk, for some k ∈ Z. also from d|m we get m = dl, for some l ∈ Z

We can easily replace m and see, dl − k = dk =⇒ k = d(l − k). Thus d|k, but notice since d > 1
this contradicts (k,m) = 1 being greatest common divisor. Hence (m− k,m) = 1

The proof effectively tells us that k and (n − k) as not just additive inverse in the additive group
but they both generator of the group.

Finally, We are looking for the smallest possible non trivial star. Since the generators are always
paired up. We need ϕ(n) = 4, so that two choices belongs to trivial star and other two are our
desired. This happens when we have n = 5, because ϕ(5) = 4 Therefore, the smallest possible star
is our familiar 5 pointed star.
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3 Multiplicative Construction and Isomorphism

In the previous section, we considered the successive elements in an additive fashion to construct
the pattern. It’s natural to ask, can we construct a star polygon in a multiplicative fashion ?. This
means, starting with the labels {1, 2, 3, ..., n − 1} and choosing some label to repeatedly multiply
and reach all elements of the set to draw a star. It turns out that we cannot do this all the time, but
it’s possible when n is some prime number. The interesting fact is that this construction doesn’t
even look anywhere close to a star until we apply some magic over it, the isomorphism.

Let us begin with U(p), the of all positive integers less than p and relatively prime to p.

U(p) = {x : gcd(x, p) = 1} = {1, 2, ..., p− 1}

We can easily see that U(p) is a group under multiplication modulo p. In general, U(n) is not cyclic
that is why we don’t get star patterns all the time but when n = p, it’s cyclic group.

Consider U(11) = {1, 2, 3, ..., 10}. Labels these points around a circle. We can verify that 7 is a
generator of the group. Thus, compute the multiplicative powers of 7 in modulo 11 and join the
labels. Connect 1 to 7, 7 to 72 = 5, 5 to 73 = 2, 2 to 74 = 4, · · · , and 8 to 710 = 1 to obtain the
Figure 2.1
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Fig 3.1

Clearly it doesn’t look like a star, but let’s relabel these points in some fashion preserving the
multiplication operation

Let’s observe, the following multiplication 8 = 79 and 7 = 71in U(11)

79 ·11 71 = 710 = 70 = 1

Notice that even though the multiplication is U(11), in the exponents, an addition modulo 10
operation is happening under the hood. This means, the element 279 in U(11) can be corresponded
to element 9 in Z. Therefore we expect a structural similarity between the groups U(11) and Zn.
This similarity can be established by an isomorphism.

Let’s define the isomorphism,

ϕ(7k (mod 11)) = k (mod 10)
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We have the following mappings from Z10 to U(11). 0 ↔ 1, 1 ↔ 7, 2 ↔ 5, 3 ↔ 2, · · · , 9 ↔ 8.
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Fig 2.1
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Fig 2.3

To obtain the star polygon from the distorted figure, we first found the isomorphism, then moved
the points around by preserving its corresponding edges.

In the above example, we were able to easily find out an isomorphism to reveal our original pattern
because, we were able to easy find out a generator or primitive root of the group U(p). However,
In general, It isn’t an easy task to find a generator of the group U(p). This is because, finding out
generator of a group is better known as the Discrete Logarithm Problem, and it is known to be
computationally hard, this hardness is the backbone of cryptographic algorithms that safe guard
our daily transactions and conversations.

4 Star Figures: Cosets and Factor Group

In the introduction, we saw that the patterns requiring us to lift the pen is known as star figures.
In the section we will count the number of components in a star figure, this will help to visualize a
factor group.

What’s a coset of H in G generated by ′a′ ?. Think about first picking a subgroup H of G, then
pick an another element a′ from G, translate each element of H using ′a′ to get the coset a +H.
For instance, G = Z8, H =< 2 >= {0, 2, 4, 6}. The distinct cosets we can obtain are 0+ < 2 > and
1+ < 2 >. The key connection to the star figure is that each component corresponds to a coset.

6



0

1

2

3

4

5

6

7

Fig 1.2 Star Figure {8/2}

We can see when k = 2, we have H =< 2 >. Therefore, the components are 0 + H = {0, 2, 4, 6}
and 1 +H = {1, 3, 5, 7}

If we were to collect all the cosets of group Zn and under the operation coset-addition it becomes
the factor group Zn/ < a >= {0+ < a >, 1+ < a >, · · · , (n− 1)+ < a >}.

1 How many components are there in an {n/k} Star Figure ?

We saw that every each component correspond to each coset which is in turn an element of the
factor group. Therefore, the total number of components is the cardinality of the factor group. Let
n and k be given. There are |Zn/ < a > | components in a star figure.
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